QUESTION?

L'énergie de l'état fondamental (n=1) d'un atome H est de -13.6 eV.

L'énergie nécessaire pour l'excitation de l'état fondamental à l'état n=2 est de:

1:
$$1/2 \cdot 13.6 \text{ eV}$$

$$E_n = \frac{-13.6 \text{ eV}}{n^2}$$

4:
$$-3/4 \cdot 13.6 \text{ eV}$$

QUESTION?

L'énergie de l'état fondamental (n = 1) d'un atome H est de -13.6 eV.

L'énergie nécessaire pour l'excitation à l'état n = 2 est de:

1:
$$1/2 \cdot 13.6 \text{ eV}$$

2: 3/4 · 13.6 eV

3: $1/4 \cdot 13.6 \text{ eV}$

4: $-3/4 \cdot 13.6 \text{ eV}$

$$\Delta E = E(n=2)-E(n=1)=-13.6 (1/4 - 1/1) = \frac{3}{4} 13.6 \text{ eV}$$

QUESTION?

Quelle série de nombres quantiques peut décrire une orbitale atomique?

$$n \ge 1$$
 $0 \le l \le n-1$ $-l \le m_1 \le l$

1.
$$n = 0, l = 0, m_1 = 0$$

2.
$$n=2$$
, $l=2$, $m_1=2$

3.
$$n=2$$
, $l=1$; $m_1=2$

4.
$$n = 4$$
, $l = 3$, $m_1 = -3$

Quelle série de nombres quantiques peut décrire une orbitale atomique?

Règle enfreinte

1.
$$n=0$$
, $1=0$, $m_1=0$ $n \ge 1$

$$n_1 = 0$$
 n

2.
$$n = 2$$
, $l = 2$, $m_1 = 2$ $l < n$

$$m_1 = 2$$
 1 < 1

3.
$$n = 2$$
, $l = 1$; $m_1 = 2$ $-1 \le m_1 \le 1$

$$m_1 = 2$$

$$-1 \le m_1 \le 1$$

4.
$$n = 4$$
, $1 = 3$,

$$m_1 = -3$$

QUESTION

Quelles séries de nombres quantiques peuvent représenter les 7^{ème} et 8ème électrons de l'atome d'oxygène

1.
$$(2,0,0,\pm 1/2)$$
 et $(2,0,1,\pm 1/2)$

2.
$$(2,1,-1,+1/2)$$
 et $(2,1,+1,+1/2)$

3.
$$(2,1,-1,+1/2)$$
 et $(2,1,0,-1/2)$

4.
$$(2, 2, -1, \frac{1}{2})$$
 et $(2, 2, -1, -\frac{1}{2})$

QUESTION

Quelles séries de nombres quantiques peuvent représenter les 7^{ème} et 8ème électrons de l'atome d'oxygène

1.
$$(2,0,0,\pm 1/2)$$
 et $(2,0,1,\pm 1/2)$

2.
$$(2,1,-1,+1/2)$$
 et $(2,1,+1,+1/2)$

3.
$$(2,1,-1,+1/2)$$
 et $(2,1,0,-1/2)$

4.
$$(2, 2, -1, \frac{1}{2})$$
 et $(2, 2, -1, -\frac{1}{2})$

Quel est le premier élément du tableau périodique qui contient à coup sûr un électron avec les nombres quantiques suivants n=5 et $m_l=-3$

- 1. ₆₃Eu
- 2. ₈₉Ac
- 3. ₉₅Am
- 4. ₁₀₂No

Quel est le premier élément du tableau périodique qui contient à coup sûr un électron avec les nombres quantiques suivants n = 5 et $m_l = -3$

- 1. ₆₃Eu
- 2. ₈₉Ac
- 3. ₉₅Am
- 4. ₁₀₂No

[Rn] 7s² 5f⁷

Quel est le nombre obtenu en additionnant les électrons célibataires des trois espèces chimiques suivantes (à l'état fondamental):

Sn, Sn²⁺ et Sn⁴⁺

- 1. 0
- 2. 2
- 3. 6
- 4. 8

Quel est le nombre obtenu en additionnant les électrons célibataires des trois espèces chimiques suivantes (à l'état fondamental):

Sn, Sn²⁺ et Sn⁴⁺

- 1. 0
- 2. 2
- 3. 6
- 4. 8

[Kr]
$$5s^2 4d^{10} 5p^2$$

2 électrons célibataires

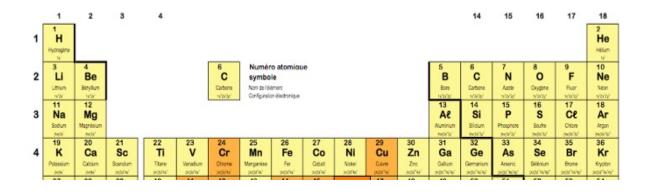
2.
$$Sn^{2+}$$

[Kr]
$$5s^2 4d^{10} 5p^2$$

3.
$$Sn^{4+}$$

$$[Kr] \frac{5s^2}{4} d^{10} \frac{5p^2}{}$$

 $[Kr]: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6$


Remarque sur la notation: pour Sn on peut écrire:

ou

[Kr] 4d¹⁰ 5s² 5p²

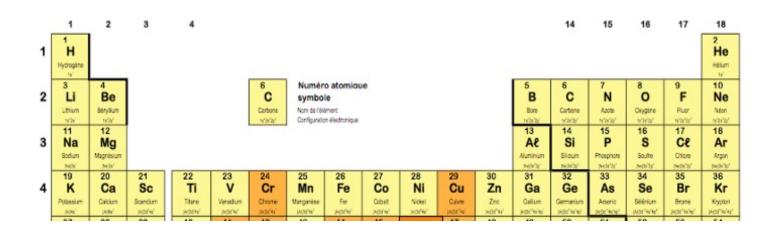
Qui a le plus grand rayon atomique?

- 1. K (numéro atomique 19)
- 2. Cl (numéro atomique 17)

Qui a le plus grand rayon atomique

1. K

2. Cl


Rayon atomique de K plus grand que celui de Br (tendance le long d'une période)

Rayon atomique de Br plus grand que celui de Cl (tendance le long d'une colonne)

Rayon atomique de K plus grand que celui de Cl

Qui a le plus grand rayon ionique?

- 1. K⁺
- 2. Cl⁻

Qui a le plus grand rayon ionique

- 1. K⁺
- 2. Cl-

Même nombre d'électrons Même type de configuration électronique Charge du noyau plus petite pour Cl-Interaction coulombique plus faible pour Cl-Rayon plus grand pour Cl-